A Novel MPEG-PDLLA-PLL Copolymer for Docetaxel Delivery in Breast Cancer Therapy
نویسندگان
چکیده
Satisfactory drug loading capacity and stability are the two main factors that determine the anti-cancer performance. In general, the stability of the micelles is reduced when the drug loading (DL) is increased. Therefore, it was a challenge to have high drug loading capacity and good stability. In this study, we introduced a hydrophilic poly (L-Lysine) (PLL) segment with different molecular-weights into the monomethoxy poly (ethylene glycol)-poly (D, L-lactide) (MPEG-PDLLA) block copolymer to obtain a series of novel triblock MPEG-PDLLA-PLL copolymers. We found that the micelles formed by a specific MPEG2k-PDLLA4k-PLL1k copolymer could encapsulate docetaxel (DTX) with a satisfactory loading capacity of up to 20% (w/w) via the thin film hydration method, while the stability of drug loaded micellar formulation was still as good as that of micelles formed by MPEG2k-PDLLA1.7k with drug loading of 5% (w/w). The results from computer simulation study showed that compared with MPEG2k-PDLLA1.7k, the molecular chain of MPEG2k-PDLLA4k-PLL1k could form a more compact funnel-shaped structure when interacted with DTX. This structure favored keeping DTX encapsulated in the copolymer molecules, which improved the DL and stability of the nano-formulations. The in vitro and in vivo evaluation showed that the DTX loaded MPEG2k-PDLLA4k-PLL1k (DTX/MPEG2k-PDLLA4k-PLL1k) micelles exhibited more efficiency in tumor cell growth inhibition. In conclusion, the MPEG2k-PDLLA4k-PLL1k micelles were much more suitable than MPEG2k-PDLLA1.7k for DTX delivery, and then the novel nano-formulations showed better anti-tumor efficacy in breast cancer therapy.
منابع مشابه
A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.
A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer wa...
متن کاملSynthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers
Amphiphilic block copolymers have attracted a great deal of attention in drug delivery systems. In this work, a series of monomethoxy-poly (ethylene glycol)-poly (ε-caprolactone-co-D,L-lactide) (MPEG-PCLA) copolymers with variable composition of poly (ε-caprolactone) (PCL) and poly (D,L-lactide) (PDLLA) were prepared via ring-opening copolymerization of ε-CL and D,L-LA in the presence of MPEG a...
متن کاملPoly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery
Poly(styrene)-b-poly(DL-lactide) (PS-PDLLA) copolymer-based nanoparticles (NPs) of a narrow size distribution, negative zeta potential, and spherical shape were fabricated for the delivery of docetaxel (DCT). The particle size was consistently maintained in serum for 24 hours and a sustained drug release pattern was observed for 10 days in the tested formulations. The cytotoxicity of the develo...
متن کاملIntelligently Targeted Drug Delivery and Enhanced Antitumor Effect by Gelatinase-Responsive Nanoparticles
AIMS The matrix metalloproteinase (MMP) 2/9, also known as collagenases IV and gelatinases A/B, play a key role in cancer invasion and metastasis. However, the clinical trials of the MMP inhibitors (MMPIs) ended up with disappointing results. In this paper, we synthesized a gelatinase-responsive copolymer (mPEG-PCL) by inserting a gelatinase cleavable peptide (PVGLIG) between mPEG and PCL block...
متن کاملPreparation and Investigation of Amphiphilic Block Copolymers/Fullerene Nanocomposites as Nanocarriers for Hydrophobic Drug
Biopolymer/inorganic material nanocomposites have attracted increasing interest as nanocarriers for delivering drugs owing to the combined advantages of both biopolymer and inorganic materials. Here, amphiphilic block copolymer/fullerene nanocomposites were prepared as nanocarriers for hydrophobic drug by incorporation of C60 in the core of methoxy polyethylene glycol-poly(d,l-lactic acid) (MPE...
متن کامل